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Abstract— In this paper, we introduce a new deep learning
architecture for camera and Lidar sensor fusion. The proposed
scheme performs 2D object detection using the RGB camera
image and the depth, height, and intensity images generated
by projecting the 3D Lidar point cloud into camera image
plane. The proposed object detector consists of two convo-
lutional neural networks (CNNs) that process the RGB and
Lidar images separately as well as the fusion network that
combines the feature maps produced at the intermediate layers
of the CNNs. We aim to develop a robust object detector that
maintains good object detection accuracy even when the quality
of the sensor signals is degraded for object detection. Towards
this end, we devise the gated fusion unit (GFU) that adjusts
the contribution of the feature maps generated by two CNN
structures via gating mechanism. Using the GFU, the proposed
object detector can fuse the high level feature maps drawn
from two modalities with appropriate weights to achieve robust
performance. Experiments conducted on the challenging KITTI
benchmark show that the proposed camera and Lidar fusion
network outperforms the conventional sensor fusion methods
even when either of the camera and Lidar sensor signals is
corrupted by missing data, occlusion, noise, and illumination
change.

I. INTRODUCTION

Autonomous vehicle is equipped with various types of
sensors such as camera, Lidar, radar, and ultrasonic sensors.
The data collected by these sensors is used to identify
surrounding objects and understand traffic situation in highly
dynamic environments. In particular, detection of various
dynamic traffic participants such as car, bike, pedestrian,
and cyclist is a critical component of the perception for
safe autonomous driving. Recently, remarkable improvement
in the accuracy of object detection has been achieved as a
machine learning model called convolutional neural network
(CNN) is applied to detect the objects from the camera
images. The CNN is capable of finding high level features
that generalize well for various environments by training the
complex neural network model with the massive amount of
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labeled images. Such CNN is employed to perform various
complicated perception tasks such as object detection. Thus
far, several CNN architectures for object detection have
been proposed, including the region-CNN (R-CNN) [1],
faster R-CNN [2], single shot detector (SSD) [3], and you
only look once (YOLO) [4], [5]. These methods calculate
the score for the bounding box candidate and the object
class based on the feature map produced by the CNN and
the whole architecture is trained in an end-to-end fashion.
Though these methods offer significant performance gain
over the conventional object detectors based on the hand-
crafted features, the camera only-based methods often fail to
reach the detection accuracy close to 100% especially when
the camera is severely hampered by harsh environments such
as intense light, shadow, reflection, malfunctioning, and so
on.

One viable option to achieve reliable object detection
against such challenging situations is sensor fusion which
takes advantage of the redundant information underlying
in the data collected from the multiple sensors. The use
of different types of sensors provides the rich and diverse
knowledge on the surroundings, thus allowing for better
perception. Thus far, various sensor fusion techniques have
been proposed. The widely adopted approach is late fusion
method, which processes different sensor data independently
and combine the results (perhaps probabilistically) after
processing is done [6]. While this structure is simple to
implement, it does not fully exploit high-level dependency
between different modalities. Recently, CNN-based sensor
fusion techniques have been proposed, which combine the
intermediate features found by the separate CNN archi-
tectures for multiple sensor modalities [7], [8]. Since the
information fusion is performed at the abstract feature levels,
this approach, called intermediate fusion, can effectively find
the joint data representation, yielding significant performance
gain for various perception tasks. While CNN-based sensor
fusion is capable of finding good joint representation from
the multi-modal sensor data, it often fails to offer robust
performance especially when some sensor data is corrupted
in unfavorable situations such as occlusion, illumination
change, failed operation and so on. Once the network is
trained, the network parameter is fixed and the corrupted sen-
sor data could harm the joint representation produced by the
sensor fusion, consequently leading to severe performance
loss. To address this issue, it is necessary develop a robust
sensor fusion method which can take full advantage of the
complimentary attribute of the sensor fusion.

In this paper, we propose the robust CNN-based sensor

2018 IEEE Intelligent Vehicles Symposium (IV)
Changshu, Suzhou, China, June 26-30, 2018

978-1-5386-4452-2/18/$31.00 ©2018 IEEE 1620

Authorized licensed use limited to: Hanyang University. Downloaded on August 24,2023 at 04:58:17 UTC from IEEE Xplore.  Restrictions apply. 



fusion architecture referred to as deep gated information
fusion network (DGFN). We specifically develop the camera-
Lidar sensor fusion method performing 2D object detection.
First, we project the Lidar 3D point cloud data into the
camera image plane and generate the multi-channel Lidar
image. The camera and Lidar images are separately fed to
two CNN core networks to produce the intermediate feature
maps used for sensor fusion. Our DGFN concatenates the
intermediate feature maps and applies additional convolution
layers to find the joint data representation. In order to
facilitate robust sensor fusion, we devise the gated fusion
unit (GFU) which adjusts the contribution of the feature
maps from each modality adaptively based on their quality.
The operation of GFU is based on the gating mechanism
which weights the feature maps using the weight map in
efforts to keep the information delivered by the reliable
features while mitigating the effect of degraded modality.
Note that this gating operation is analogous to that used
in long short-term memory (LSTM) in that it controls the
information flow for data fusion in a data-dependent manner.
Note that the principle of the GFU can be readily applied
to any sensor fusion methods combining CNN features. We
evaluate the proposed DGFN on the KITTI object detection
benchmark [9]. Our experiments show that the proposed
algorithm offers significant performance improvement over
the existing object detectors in the scenarios where either
of two sensor measurements is corrupted by missing data,
occlusion, noise, and illumination change.

II. RELATED WORK

In this section, we briefly review the CNN-based object
detection methods. Then, we introduce the existing deep
learning-based sensor fusion approaches presented in the
literature.

A. Camera-based Object Detection

Recently, CNN has been used for object detection and
has led to remarkable performance improvement. Since the
region-CNN (R-CNN) [1] has first shown to achieve the
unprecedented object detection performance using CNN, a
variety of CNN-based object detectors have been proposed.
The state-of-the-art object detectors can be categorized into
two groups: two-stage detectors and single-stage detectors.
The two-stage detectors employ the two separate networks;
1) the region proposal network for finding the bounding box
containing the object and 2) the object classifier network for
identifying the class of the object in the bounding box. Such
two-stage detectors include the fast R-CNN [10] and faster
R-CNN [2]. Unfortunately, the computational complexity of
these two-stage object detectors is high to meet stringent real-
time constraint for autonomous vehicles. Thus, single-stage
detectors have been proposed, which infer the information
on the bounding box and the object class in one shot
through the single network. Owing to fast processing speed,
these single-stage detectors have been popularly used for
many practical applications and the well-known single-stage
detectors include SSD [3], YOLO [4], and YOLO2 [5].

B. Deep Learning-based Sensor Fusion

The purpose of sensor fusion is to exploit the inter-
relationship between the multi-modal data with different
distribution. Basically, sensor fusion can be performed at
the different stages of feature extraction [11]. Early fusion
extracts the shared information on data by jointly processing
the raw data measurements acquired by multiple sensors.
Due to significant difference in the distribution of the multi-
sensor signals, it is not easy to find good joint representation
directly from the raw data. The late fusion methods combine
the information at the final stage of feature extraction.
Unfortunately, this approach does not fully exploit high-
level dependency between the multi-modal signals. Recently,
it has shown in [12]–[15] that leveraging the capability
of the deep learning to find high-level data representation,
the intermediate fusion can effectively find the joint data
representation by combining the features extracted at the
intermediate layers of deep neural network.

The deep learning-based sensor fusion has also been
proposed in the context of autonomous driving [7], [8], [16].
In [7], the Lidar point cloud data is transformed into the
multi-view images including cylindrical and bird’s eye views
and the CNN-based fusion network is applied to learn the
joint feature from both the RGB camera image and multi-
view Lidar images. In [8], the authors proposed the point-
fusion network which predicts the corner location of the
3D bounding box based on the Lidar 3D points. In [16],
the authors proposed the camera Lidar fusion method that
uses a new layer called non-homogeneous pooling layer that
transforms features between the bird’s eye view map and the
front view map.

III. PROPOSED DEEP GATED INFORMATION
FUSION NETWORK (DGFN)

In this section, we present the overall structure of the
proposed DGFN method and explain the key principle of
the GFU.

A. Overall System Description

The overall structure of the proposed DGFN is described
in Fig. 1. The camera and Lidar images are passed through
two separate CNNs to produce the feature maps for each
sensor data. Note that each CNN structure used in our DGFN
is similar to that used for SSD. (The VGG network [17] is
used for the first 15 layers and 8 extra convolutional layers
are added.) In order to fuse the information extracted from
two CNN pipelines, we collect the feature maps at the layers
of conv4 3, conv7 (FC7), conv8 2, conv9 2, conv10 2, and
conv11 2 layers1 and combine them through the GFU. The
GFU produces the joint feature maps, which are used to
perform the bounding box regression and object classification
as done in the SSD. The detailed operation of the GFU will
be explained later.

1We follow the notations of the SSD in [3].
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Fig. 1. Overall structure of the proposed object detector

B. LIDAR Front-view Representation

The Lidar 3D point cloud data contains the 3D coordinate
(x, y, z) and the reflectivity r measured for each reflected
laser pulse. Note that (x, y, z) represents the coordinates in
the front, side, and top directions. Since there are numerous
data points in the 3D point cloud, it is not straightforward
to process them using the deep neural network. In order to
leverage the capability of the CNN to process two dimen-
sional grid data, we convert the 3D point cloud data into the
2D images. Specifically, we map the 3D coordinate (x, y, z)
of Lidar data into the 2D coordinate (X,Y ) on camera plane
using

[
X
Y

]
= calib matrix ·

xy
z

 . (1)

where calib matrix is the matrix for coordinate transfor-
mation. Note that we quantize (X,Y ) to the nearest integer
and limit the maximum range of (X,Y ) by that of camera
plane. For the given 2D coordinate (X,Y ), we create three
channel image by encoding the values of x, z, and r to the
pixel values. This creates the image with the depth, height,
and intensity (DHI) channels. The pixel values for the DHI
channels are obtained by

vald = 255 · (1−min[x/max x, 1]) (2)
valh = 255 · (1−min[z/max z, 1]) (3)
vali = 255 · (1−min[r/max r, 1]). (4)

Note that x ∈ [0,max x], z ∈ [0,max z], and r ∈
[0,max r] are mapped to the pixel values between [0, 255] in
a linear scale. For example, we normally set max x, max z,
and max r to 80 meter, 6 meter, and 0.7.

Fig. 2. The proposed gated fusion unit

C. Gated Fusion Unit (GFU)

The proposed GFU has a role of combining the feature
maps produced by two CNN pipelines. In GFU, the high-
level feature maps obtained by multiple CNNs are selectively
weighted to accomplish robust sensor fusion. The structure of
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the GFU is depicted in Fig. 2. We let FL and FC be the M×
N ×K feature maps obtained by two CNNs corresponding
to the camera and the Lidar images, respectively. All M ×
N × 1 feature maps contained in FL and FC are element-
wise multiplied by the M×N×1 weight maps wL and wC ,
respectively. In order to calculate the GFU weight maps wL

and wC , we concatenate the input feature maps, FL and FC

and apply two 3×3×1 kernels CL and CC followed by the
sigmoid function. Depending on the input feature maps FL

and FC , the GFU produces the weight maps wL and wC

whose elements have a value between 0 and 1. Note that
the GFU weights are multiplied to each pixel of the feature
maps independently, which means that the gating operation
is performed pixel-wise. Finally, the weighted feature maps
are concatenated and passed through 1 × 1 × K kernel to
produce the final joint feature maps FJ . We summarize the
operation of the GFU in the following equations

FG = FL � FC (5)
wL = σ(CL ∗ FG + bL) (6)
wC = σ(CC ∗ FG + bC) (7)

FF (i) = (FL(i)�wL)� (FC(i)�wC), i = 1, ...,K,
(8)

FJ = ReLU(CJ ∗ FF + bF ) (9)

where
• σ(x) , 1

1+e−x : sigmoid function (element-wise)
• x ∗ y: convolutional layer
• x� y: element-wise product
• x� y: concatenation
• F(i): ith feature map of F
• bF ,bC ,bL: biases of the convolutional layers.

IV. EXPERIMENTS

In this section, we evaluate the performance of the pro-
posed DGFN on the KITTI object detection benchmark [9].

A. Experiment Setup

1) Dataset: The KITTI dataset consists of 7481 training
data samples and 7518 testing data samples. Both camera
images and 3D point cloud data are available and the object
is labeled only on the camera images. Since the labels
of the test images are not publicly available, we split the
labeled data into the training set and the validation set by
half, following the method in [18]. We consider three object
classes, i.e., car, pedestrian, and cyclist and evaluate the
object detectors on the task with three difficulty levels (easy,
moderate, hard) as proposed in the KITTI Benchmark.

2) Training: In order to train the proposed DGFN for the
degraded sensor data, we conduct the data augmentation. We
modify one of camera and Lidar images using the following
operations

• Blank Data: we feed all zero image to CNN in place of
either camera image or Lidar image.

• Random occlusion: we occlude the object using the
black box whose size and location are randomly chosen.

(a) Original RGB image

(b) Illumination change

(c) Noise

(d) Occlusion

Fig. 3. Examples of modifications applied to the camera image

• Additive random noise: we add the random Gaussian
noise only to the camera image where noise variance is
randomly chosen within the certain range.

• Abrupt illumination change: we brighten the camera
image in the rounded local region where the center and
radius of the region and the brightness are randomly
chosen.

The examples of the modifications applied to the camera
images are illustrated in Fig. 3. During training, for every
weight update, we try one of above five modifications
(including no action) to the training images with equal
probability. We generate the extended test data set by adding
the modified test images to the original data set.

We use the pretrained model of the VGG16 network for
two CNN pipelines. We adopt many training strategies used
in SSD, such as matching strategy, hard negative mining,
and loss function. We employ stochastic gradient descent
(SGD) with the mini-batch size of 2. A total of 240, 000 back
propagation iterations are performed without early stopping.
The initial learning rate is set to 0.0003. We set the weight
decay to 0.0005 for L2 regularization and the momentum to
the parameter 0.9.
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TABLE I
AVERAGE PREDICTION OF THE PROPOSED ALGORITHM VERSUS THE BASELINE ALGORITHM

Test Input Proposed (with GFU) Baseline (without GFU)
Easy Moderate Hard Easy Moderate Hard

Full 93.95 86.70 78.05 89.86 82.21 72.21
Lidar + RGB (normal) 98.69 90.31 82.16 93.61 87.01 77.52
Lidar + RGB (blank) 88.86 78.12 69.68 86.56 74.30 64.71
Lidar (blank) + RGB 97.39 90.29 81.84 91.88 88.10 78.68

Lidar + RGB (occlusion) 89.88 88.12 79.03 88.12 78.52 68.85
Lidar (occlusion) + RGB 97.72 90.23 81.94 92.75 87.10 77.67

Lidar + RGB (noise) 89.33 80.15 71.12 86.75 75.13 65.71
Lidar + RGB (illumination) 95.82 89.71 80.58 89.37 85.31 75.87

Fig. 4. The histogram of the averaged GFU weight at conv4 3 layer

(a) The locally occluded RGB image for test

(b) The weight map applied to RGB feature maps

(c) The weight map applied to the Lidar feature maps

Fig. 5. The visualization of the GFU weight maps at conv4 3 layer

TABLE II
DETECTION PERFORMANCE (AP) OF SEVERAL OBJECT DETECTORS (*:

TRAINED BY US)

Method Data Easy Moderate Hard
SSD* [3] Mono 90.27 87.87 79.29
SSD* [3] Lidar 89.11 77.92 68.87

3DOP [18] Stereo 94.49 89.65 80.97
Mono3D [19] Mono 95.75 90.01 80.66

Deep Manta [20] Mono 97.58 90.89 82.72
MV3D [7] Lidar+Mono 95.01 87.59 79.90
Our DGFN Lidar+Mono 98.69 90.31 82.16

B. Experiment Results

In order to verify the benefit of the gating operation, we
first compare our object detector with the baseline model
without the GFU. Note that the baseline model uses the
GFU weight maps whose elements are all fixed to one. We
train both models with the same augmented training data
set. We evaluate the performance of two models with 1) the
full test data set, 2) original test data (no action), and the
modified data with 3) blanking, 4) occlusion, 5) noise and
6) illumination change. Note that we use the same amount
of test examples for each case. Table I provides the average
precisions (AP) achieved by both models. We observe that
the proposed object detector significantly outperforms the
baseline detector for all cases considered. In particular, the
proposed method achieves better detection accuracy for var-
ious corruption patterns, which shows the robustness of our
method. Interestingly, the proposed scheme also outperforms
the baseline algorithm even when the normal test data is used
without any data modification. To investigate this issue, we
inspect the feature maps produced by both CNNs. We find
that in order to cope with various kinds of degradation in the
training data, the baseline algorithm learns somewhat similar
features from both camera and Lidar images, failing to use
the diversity of underlying structures in two modalities. On
the contrary, two CNN features learned by the proposed
model look distinct owing to the model flexibility provided
by the gating operation.

Next, we look into the behavior of the gating operation
in details. Fig. 4 shows the histogram of the GFU weights
(averaged over the whole weight map at the conv4 3 layer)
for the case where the camera sensor is completely blanked.
Note that the weights multiplied to the camera side features
are close to zero to reduce the contribution from the camera
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features while the weights to the Lidar side are close to one.
In Fig. 5, we visualize the GFU weight maps learned by the
GFU for the case where the RGB image is locally occluded
by the black box. We find that the GFU weights in the
camera side are small only within the locally occluded region
while they are high in the rest of area. The GFU weights
for the Lidar side are relatively high for the whole region.
This shows our gating mechanism controls the amount of
information combined for sensor fusion depending on the
quality of the features for each local region of the feature
maps.

In Table II, we compare the performance of our object
detector with that of other CNN-based object detectors. For
fair comparison, we use the same evaluation method as
that in [7], [18]–[20]. The baseline algorithms we consider
include SSD [3], 3DOP [18], Mono3D [19], Deep Manta
[20], and MV3D [7]. Note that we use only the normal KITTI
data without any data modification for fair comparison. We
separately apply the regular SSD to both camera and DHI
images generated by the same preprocessing step we used.
We observe that the performance of the proposed DGFN is
better or on par with the baseline algorithms for all difficulty
levels. This shows that the proposed sensor fusion method
achieves the competitive performance while exhibiting the
robust behavior in adverse environments.

V. CONCLUSIONS

In this paper, we proposed the camera Lidar fusion-based
object detector which offers robust performance against the
degraded quality of sensor data. Two CNNs were employed
to process the RGB image and three channel LIDAR image
obtained by transformation of the 3D point cloud data. The
feature maps produced at the intermediate levels of two
CNNs are combined to produce the joint data representation.
To facilitate the robust sensor fusion, the amount of informa-
tion extracted from each sensor data is regulated by the gated
fusion unit which produces the weights used to combine
the feature maps based on their quality. Our experiments
conducted on the KITTI object detection benchmark show
that the gating operation offers significant performance gain
over the baseline algorithm for various types of degradation
and the proposed object detector achieves the comparable
detection performance over the existing object detectors.
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