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Abstract— In this paper, we present a new deep neural
network architecture, which detects objects in bird’s eye view
(BEV) using Lidar sensor data in autonomous driving scenarios.
The key idea of the proposed method is to improve the accuracy
of the object detection by exploiting the 3D global context
provided by the whole set of Lidar points. The overall structure
of the proposed method consists of two parts: 1) the detection
core network (DetNet) and 2) the context extraction network
(ConNet). First, the DetNet generates the BEV representation
by projecting the Lidar points into the BEV plane and applies
the CNN to extract the feature maps locally activated on
the objects. The ConNet directly processes the whole set
of the Lidar points to produce the 1× 1× k feature vector
capturing the 3D geometrical structure of the surrounding in
the global scale. The context vector produced by the ConNet
is concatenated to each pixel of the feature maps obtained by
the DetNet. The combined feature maps are used to regress
the oriented bounding box and identify the category of the
object. The experiments evaluated on the public KITTI dataset
show that the use of the context feature offers the significant
performance gain over the baseline and the proposed object
detector achieves the competitive performance as compared to
the state of the art 3D object detectors.

I. INTRODUCTION

Three dimensional (3D) object detection refers to a task
of obtaining the information of the 3D box coordinate and
the category of objects from the sensor data. In autonomous
driving, 3D object detection provides the useful information
on the dynamically changing environments around the ego-
vehicle. 3D object detection can also be conducted in Bird’s
eye view (BEV) domain, where the bounding box containing
the object is represented in an elevated view of the object
from above. Though object detection in BEV does not
provide full 3D information on the objects, it offers the
sufficient information to conduct path planning and control
for autonomous driving. From now on, we will refer to
the task of detecting the objects in BEV domain as BEV
object detection. Various types of sensors can be used for
3D object detection. Though the camera sensor provides the
rich information such as shape, color, and texture useful to
detect the object, it has the limited capability in capturing
3D geometric information needed for 3D object detection. In
particular, the Lidar sensor offers accurate ranging informa-
tion by transmitting a laser pulse and measuring the reflected
pulses. By scanning 3D region of interest, the Lidar sensor
can generate the collection of the 3D points of coordinate,
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called the point cloud. Such point cloud data provides the
3D geometrical structure on the surrounding, which can be
used for object detection.

Recently, we have seen remarkable advance in computer
vision technique owing to the emergence of the deep neu-
ral network (DNN). One of the DNN architecture, called
convolutional neural network (CNN), extracts the features
from the data of a 2D grid topology (e.g., RGB image)
by repeatedly applying the convolutional operation followed
by the nonlinear function. By training the CNN model
with a number of training data examples, high-level abstract
features can be successfully extracted from the data. Such
high level features can be used to achieve great performance
for a variety of challenging computer vision tasks.

The CNN has also been applied to achieve significant
performance improvement in the object detection task. So
far, various CNN-based object detectors have been proposed
to detect the objects from the 2D camera images [1]–[3].
Recently, the DNN architecture has also been developed
to detect the objects from the 3D Lidar points. Since the
Lidar sensor offers accurate ranging information, the object
detectors using the Lidar points are shown to achieve good
performance in 3D object detection. The point data acquired
by the Lidar sensor has different structure from the camera
image. The Lidar data contains the un-ordered set of points.
The distribution of the Lidar data is irregular, discontinuous
and sparse in 3D space, which makes it hard to apply the
CNN model without proper modification. There are two
ways to generate the features from the Lidar points. The
first approach is to project the 3D Lidar points onto the
appropriately chosen 2D planes (e.g. front view or BEV
domains) and apply the CNN model to find the features used
for 3D object detection. The second approach is to employ
the neural network specifically designed to process the Lidar
points directly. The popular neural network designed for this
purpose is the PointNet [4], [5], which applies multi-layer
perceptron (MLP) and the max-pooling operation to produce
the features.

We expect that the contextual cues that can be inferred
from the background of the object can be used to improve
the performance of the object detection. For example, the
geometrical structure captured in the road, guard rails, curb,
global traffic scenes would help detecting the objects in the
driving scenarios though the baseline object detectors tend
to rely only on the locally activated features. In this paper,
we investigate how to design an effective 3D object detector
which can effectively exploit the contextual cue captured in
the whole scan of Lidar points. In fact, it has been revealed
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Fig. 1. Structure of the proposed BEV object detector

in [6] that such contextual information can be obtained from
the HD map and the performance of the object detector can
be improved using the context features.

In this paper, we propose a new BEV object detector which
uses the 3D global context inferred from the scan of the
Lidar points. Fig. 1 depicts the structure of the proposed
object detector. Our method consists of two main parts; 1) the
detection core network (DetNet) and 2) the context extraction
network (ConNet). The DetNet takes the BEV representation
of the Lidar points obtained by projecting them into the BEV
plane and produces the feature maps for detecting the objects
in BEV domain. On the other hand, the ConNet is designed
to extract the contextual cues on the surrounding from the
entire Lidar point set. The proposed ConNet employs the
PointNet proposed in [4], which directly processes the raw
Lidar points to produce the 1× 1× k feature vector called
context vector. Such context vector exhibits the global scale
information on the environment and is concatenated to each
pixel of the feature maps obtained from the DetNet. The
concatenated feature map is used to classify the object and
regress the oriented bounding box. We train both DetNet
and ConNet at the same time in an end to end fashion
such that the ConNet learns to produce the complementary
feature for improving the quality of the final feature maps.
Our experiments conducted on the public KITTI benchmark
[7] show that the global context generated by the ConNet
offers significant performance improvement over the baseline
BEV object detector. We also show that the proposed object
detector achieves better performance than the state of the
art BEV object detectors (top ranked on KITTI BEV object
detection benchmark).

II. RELATED WORKS

In this section, we briefly review the previous 3D object
detection methods, which use the Lidar points as an input.
We specifically review two types of the DNN architectures
for extracting the features from the 3D Lidar points.

A. 2D representation-based Object Detection

The MV3D [8] is the early work which tried to construct
the 2D multi-view representation of the Lidar points (i.e.,
in front view and BEV) and apply the CNN to perform the
3D object detection. While the MV3D achieved impressive
performance in 3D object detection, the computation time
was burdensome for real-time applications. PIXOR [9] has
reduced the complexity of the MV3D by developing the
scheme that detects the objects only from the 2D BEV
representation using the proposal-free and single-stage CNN
architecture. The HDNET [6] improves the object detec-
tion performance significantly employing the map prediction
module for extracting the geometric and semantic informa-
tion from the HD map. The object detectors proposed in
[10], [11] use both the Camera image and Lidar data for
3D object detection. The AVOD [10] fuses the Lidar BEV
data and camera front data at the intermediate convolution
layer to propose the 3D anchor boxes. The ContFuse [11]
proposes the effective fusion architecture that transforms the
front camera view features into those in BEV through some
interpolation network.

B. PointNet-based Object Detection

Most object detectors under this category are built upon
the PointNet [4] which was first proposed to extract the
features from the Lidar points directly. The PointNet [4] and
the PointNet++ [5] keep applying the MLP followed by the
max-pooling to generate higher level features from the raw
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Lidar points. The PointRCNN [12] employs the PointNet to
segment the Lidar points in the foreground in the first step
and then refines the 3D region proposals in the second step.
The approaches proposed in [13]–[15] generate the 3D region
proposals applying CNN to the camera image and then apply
the PointNet to identify the object based on the Lidar points
in the region of interest.

III. PROPOSED BEV OBJECT DETECTION

In this paper, we present the details on the proposed BEV
object detector.

A. Representation of Input Data

The Lidar sensor collects the 3D coordinate (x,y,z) and
reflectivity r for each laser pulse, generating the point clouds
around the ego-vehicle. The input to the DetNet is the 2D
image constructed by projecting the Lidar points on the BEV
plane. Specifically, we discretize the 3D point sets in the
3D region of lx× ly× lz into the 3D voxel grid of size rx×
ry× rz. In our setup, we discretize the region of [0,70]×
[−40,40]× [−2.5,1] meters at the resolution of 0.1 meters.
As a result, the shape of the 2D BEV image becomes 700×
800× 36. The pixel value of each voxel element is filled
with the height and reflectivity values of the point with the
maximum height among all points contained in each voxel
element. Such discretized data is transformed into the rx×ry
2D image with the (rz + 1) channels (including rz height
channels and one reflectivity channel). We normalize all pixel
values to be within [0,1]. On the other hand, the whole n 3D
raw Lidar points are directly fed into the ConNet in the shape
of n×3 matrix (i,e., (x,y,z) coordinate for each row).

B. Structure of the Proposed Method

1) Overall Structure: The whole structure of the proposed
object detector is illustrated in Fig. 1. The DetNet takes the
700× 800 BEV representation as an input and apply the
CNN to generate the feature maps that retain the spatial
information. Following the structure of the PIXOR network
[9], we use the backbone network consisting of the four
residual blocks [16] having [3,6,6,4] layers for each. Then,
the feature pyramid network (FPN) [17] is followed to
increase the size of the feature maps while preserving the
semantic depth of the features. Note that the size of the final
feature maps at the output of the FPN is four times less than
that of the original input. While the work in [9] directly
regresses the box location without using the anchor box, our
DetNet employs two anchor boxes for each pixel to achieve
better accuracy at the expense of higher complexity.

In order to extract the 3D global context from the Lidar
points, the ConNet takes the vector of the whole raw Lidar
points (obtained from a single scan) as an input. Following
the structure of the PointNet [4], the ConNet applies the
MLP of the five layers [64,64,64,128,96] and the max-
pooling to the point vector and produces the 1× 1× 96
feature vector. We concatenate such context vector to each
pixel of the feature maps from the DetNet. (see Fig. 1.) The
concatenated feature maps are finally fed into four additional

3×3 convolutional layers to produce the final score for the
box regression and the object classification. The size of the
channels is set to 96 for all extra convolutional layers. Our
structure guides the global context feature produced by the
ConNet to interact with the local feature obtained by the
DetNet to yield better feature maps for BEV object detection.

2) Anchor boxes: The anchor box provides the reference
for the oriented bounding box such that the residual set with
respect to the reference are estimated by the regression model
[1], [3]. Since the scale of the objects tends to be similar in
BEV, we consider only two anchor boxes with two different
orientations {0,π/2}. The anchor boxes have the area of
650 with the aspect ratio 2.3 : 1 determined by averaging the
size of ground truth bounding box for all vehicle objects in
KITTI dataset. Each anchor is associated with K dimensional
one-hot vector containing the classification confidence for
K object classes and six regression parameters containing
the center location (cx,cy), the size (w,h) and the orienta-
tion (cos2θ ,sin2θ). Note that the rotation angle θ of the
bounding box is in the range [−π/2,π/2] which disables
distinguishing the front and back ends of the objects.

3) Loss Function: We adopt the multi-task loss used in
[9] to train the proposed BEV detection network. In order to
cope with class imbalance issue, we use the focal loss with
the same hyper-parameter used in [3]. The focal loss for the
classification task and smooth `1 loss for the regression task
are used. The total loss is the sum of the focal loss computed
over all anchors and the smooth `1 loss computed over all
positive anchors. We consider the anchor to be positive if the
intersection-over-union (IoU) is in [0.5,1], and negative if it
is in [0,0.5).

IV. EXPERIMENTS

In this section, we evaluate the performance of the pro-
posed BEV object detection method using the public KITTI
dataset [7].

A. Dataset

In the KITT dataset, the 3D Lidar point cloud data is
collected using a Velodyne HDL-64E laser scanner. The
KITTI dataset consists of 7,481 images for training and
7,518 images for test. Since the test labels are not publicly
available, we split the training data to the training and
validation sets following the split method in [18], which
has also been widely adopted in other papers. Note that we
train the models with the training set and evaluate the trained
models with the validation set.

B. Training

We train our model with the KITTI dataset. We apply the
following data augmentation strategies to the training data
• Flip: We apply random flip operations to all Lidar points

along x axis.
• Translation: We apply random translation to all Lidar

points by −5∼ 5 meters along x and y axes and −1∼ 1
meters along z axis.
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TABLE I
DETECTION ACCURACY (AP) ON THE KITTI VALIDATION SET

Method Modality Easy Mod. Hard
MV3D [8] RGB + Lidar 86.55 78.10 76.67

PC-CNN [15] RGB + Lidar 83.61 77.36 69.61
F-PointNet [13] RGB + Lidar 88.16 84.02 76.44

MV3D [8] Lidar 86.18 77.32 76.33
PIXOR [9] Lidar 86.79 80.75 76.60

Baseline Lidar 87.35 78.49 76.97
Proposed method Lidar 88.78 84.64 78.57

• Rotation: We apply random rotation to all Lidar points
between −5∼ 5 degrees around the Lidar position.

• Scaling: We randomly scale the Lidar points by the
factor of 0.9∼ 1.1 along all three axes.

During training, we enable each augmentation strategy with
probability of 0.5. This allows for enabling the multiple
augmentation strategies at the same time. We train our model
with the stochastic gradient descent (SGD) algorithm with
the momentum parameter 0.9 and the initial learning rate
0.001. The learning rate decays by 0.1 at 193-th epoch
and 257-th epoch. We set the weight decay to 0.0005
for L2 regularization. During training, we use the group
normalization method where the number of the groups is
set to 2. Following [3], the focal loss parameters are set to
α = 0.25 and γ = 2. We do not use the pre-trained model
for the whole network.

TABLE II
COMPARISON BETWEEN CONNET VS. SE METHOD

Method Easy Mod. Hard
Baseline 87.35 78.49 76.97

SE method [19] 86.63 80.78 76.94
Our ConNet 88.78 84.64 78.57

Fig. 2. Distribution of the context vectors for different traffic scenes

C. Experimental Results

In this section, we evaluate the detection accuracy of the
proposed method. In order to demonstrate the benefit of the
global context found by our ConNet, we compare our scheme
with the baseline model which has the same structure but
does not use the output of the ConNet. Note that the baseline
model and proposed method are trained with the exactly
same training procedure. Table I compares the average
precision (AP) of the baseline and our object detector. We
observe that our method outperforms the baseline detector by
more than 2.5% for all difficulty levels. This result validates
the effectiveness of the global context in performing BEV
object detection. Note that the ConNet achieves up to 3.72%
improvement over the baseline for the moderate difficulty
category.

We also compare our algorithm with other state-of-the-
art BEV object detectors (i.e., top rankers who have made
their papers public in KITTI BEV object detection leader-
board). Table I shows that the proposed method achieves
the best performance among the BEV object detectors using
the Lidar sensor only. In addition, our BEV object detector
is comparable to the methods using both Lidar and camera
sensors.

Next, we investigate whether the structure of ConNet
is indeed better than the CNN structure in capturing the
geometric context from the 3D lidar points. As a reference,
we replace ConNEt with the squeeze-and-excitation (SE)
method [19], which extracts the contextual information from
the 2D BEV representation. Table II shows that our ConNet
achieves better performance than the SE-based method. This
might be due to the fact that while the ConNet retains the
3D geometric structure of the environment in its input, the
SE has lost some 3D information in the BEV representation.

D. Behavior of Proposed Object Detector

In this section, we look into the behavior of the proposed
network.

1) Distribution of Context Vector for Different Scene Cat-
egories: We take a look at the distribution of the context
vector for the different scenes. The KITTI dataset has
the examples collected from five different traffic scenarios.
Among them, we randomly select 100 samples from three
different scenarios; 1) city, 2) residential, and 3) road. For
each test example, we extract the context vectors and reduce
their dimensions into three using the principal component
analysis (PCA). Fig. 2 shows how the resulting points are
distributed in 3D space for different scene categories. We see
that the points are clustered for the different traffic categories,
which implies the context vector produced by our ConNet
reflects the structure of the global scene in the background.

2) Visualization of Intermediate Features: In order to look
at what part of features the DetNet and ConNet focus on, we
visualize the intermediate features learned by both models.
Fig. 3 (a) presents the projected BEV input image for the
DetNet (for visualization, 36 channels are compressed into 3
channels). Fig. 3 (b) and (c) present the visualized features
for the DetNet and ConNet at the position (1) and (2) in
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(a)

(b) (c)

Fig. 3. Visualization of the intermediate features produced by the DetNet and ConNet: (a) Input 2D BEV representation (objects in the red ground truth
(GT) box), (b) the feature map from the DetNet, and (c) the feature map from ConNet

the Fig. 1, respectively. Note that the these feature maps
for visualization is generated by using the magnitude of the
96-length feature vector as a pixel value. While the DetNet
activates on the regions containing the objects, the ConNet
rather focuses on the part of the road in the background.
This shows that the DetNet and ConNet activate on different
spatial regions to produce the good feature maps for BEV
object detection.

V. CONCLUSIONS

In this paper, we proposed the enhanced BEV object
detection method which uses the 3D global context inferred
from the Lidar 3D points. We employ the ConNet to gen-

erate the 1× 1× k feature vector which captures the 3D
geometrical structure around the surrounding. The context
feature is concatenated with the CNN feature maps obtained
from the main DetNet. When the combined feature maps
are used for BEV object detection, our method achieves
significant performance gain over the baseline detector. Our
BEV object detector also outperforms the other detection
methods using Lidar sensor only. Through some empirical
analysis, we show that the proposed ConNet captures the
structure on the global scene.
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